

Characterization and Optimization of Preamps

for the Mu2e Tracker

Perianne Johnson

SIST Intern, Fermi National Accelerator Laboratory, Particle Physics Division

New Mexico Institute of Mining and Technology

August 4th 2014

2

Abstract

Mu2e is a particle physics experiment hoping to observe charged lepton flavor violation

currently in the design phase at Fermi National Accelerator Laboratory. The experiment utilizes a straw

tracker, which uses small amplification devices known as preamps. The preamp is still being designed,

with changes being made to increase gain, optimize the shape of the response, and minimize noise. This

paper focuses on one round of modifications. At the end of this study, the current design of the preamp

was exhibiting a gain of 52 dB at its peak of 100 MHz, while operating at an RMS noise level of 10 mV.

Introduction

The phenomenon of Charged Lepton

Flavor Violation, in which electrons, muons, and

tau particles can readily transform into one

another, is not explicitly forbidden in the

Standard Model, though it has never been

observed, due to the low probability of the

necessary interactions, of the order 10 -50. One

such interaction consists of a muon changing

flavor into an electron with no neutrino

production. This rare event is the subject of

study for the Mu2e experiment currently being

designed at Fermi National Accelerator

Laboratory.

Figure 1:

 Mu2e utilizes a straw tracking system to

determine the path of particles produced. The

straws are composed of a long thin cylindrical

Mylar shell (5 mm diameter) with a concentric

wire running through it. Many straws are placed

together in a vacuum chamber, and the straws

themselves are filled with ArCO2 gas, which will

become ionized when a particle passes through.

A potential difference is established between

the cylindrical shell and the wire, such that

freed electrons move towards the wire and the

ions are drawn towards the shell. This produces

a detectable signal, signifying the particle was at

that straw’s location at that given time.

Knowing where on the length of the straw the

hit occurred is also important for determining

the particle’s path. This is achieved by having an

amplification device called a preamp, at both

ends of the straw. Since the current will move

through the wire in each direction at the same

speed, the time difference between when each

end’s preamp registers the hit can be used to

determine the location of incidence.

 Development of the preamp is ongoing,

seeking to maximize gain and stability while

minimizing noise and cross talk. Cross talk is an

unavoidable fact of having the preamps

mounted so close together on the

motherboard; signal from one preamp is

inevitably transferred in part to its neighbors.

Boosting the gain at key frequencies, known as

shaping, is also an important goal. This

optimization is achieved in general by making

modifications to the current version of the

preamp, sending the preamp a signal in the

form of a sine wave, and characterizing the

response, both quantitatively and qualitatively.

Some example modifications include the

amount of shaping, the values of certain

electrical components, and the type of

transistor used. This paper focuses on several

versions of the preamp and the testing

performed on them to optimize the gain and

noise.

Feynman Diagram depicting a muon changing flavor

into an electron. Credit: http://mu2e.phy.duke.edu/

3

Apparatus

Figure 2:

 A preamp, or pre-amplification device,

is a small printed circuit board that amplifies an

input signal. Many preamps are mounted

together onto a motherboard, which provides

the preamps with power, programs them via a

1-Wire chip 1, as well as allowing their amplified

signal to be seen on an oscilloscope. Each

preamp has an inherent gain, measured in

decibels (dB), which is a measure of the

amplification factor related to the ratio of

output and input signal amplitudes.

 (

) (eq. 1)

Figure 3:

The motherboard is controlled using an

Arduino Due microcontroller 2. The Arduino

provides information on which preamp to

program, what to program it with, and also

reports back if any preamps are unresponsive.

The key piece of information shared by the

Arduino is known as a balance number, so

called because it controls how much current is

on each leg of the output, which need to be

balanced. The total current supplying the two

legs is constant, and a transistor controls the

amount of current flowing through each leg,

depending on the voltages at points 1 and 2 on

the preamp schematic (shown in Appendix A1).

The balance number determines the voltage at

point 1, chosen by the user such that both legs

receive equal current when there is no signal. If

the voltage at point 2 becomes higher than at

Figure 4:

Front view of a preamp. Dimensions 4.0 cm by 1.1 cm

Motherboard, showing eight preamp channels (1), 1-

Wire Chips (2), power cable (3), four scope cables (4),

and Arduino connector (5)

1

2

5 4

3

Example plots for 100 MHz input signal.

4

Figure 5:

point 1, due to a signal or noise, more current

will be directed to one of the legs. The

difference between the two legs now shows a

detectable, nonzero signal. The balance

numbers, unique to each preamp are fed to the

Arduino by a Python script

(“balance_varies.py”, A2), and subtly changed

until both output legs have the same current.

The total current level for the preamps can also

be adjusted in Python and is communicated to

the preamps via the same Arduino program.

The balance and current numbers are stored in

a text file, which Python reads in and transmits

to the Arduino when prompted by the user. The

text file is easily modified by the user, and

“balance_varies.py” can be run continuously in

a background python command window,

allowing the user to update the balance or

current whenever appropriate. Python was also

used to save the oscilloscope data to be used

for offline analysis. The script “read.py” (AII)

captures the output waveform from the scope

and saves the data as a text file, which can be

re-plotted or otherwise manipulated later on.

This script displays the waveform plot as well as

the Fourier transform of the wave. Examples

are shown in Figure 4.

Methods and Results

Original Preamp

 This study began by analyzing the

current version of the preamp, looking at the

gain and cross talk levels. Two preamps were

mounted on the motherboard, in channels 6

and 7, and a 27 mV peak to peak amplitude sine

wave signal was supplied from a signal

generator. This signal was attenuated by 18 db,

resulting in an amplitude of 2.5 mV. Their gain

was analyzed for input signals in the 10 to 400

MHz range. Their cross talk was also measured

in this range.

Figure 5 shows the amplitude versus

frequency plot for the preamp in channel 7. This

was produced by using the python program

“read.py”. A computer is connected to the

oscilloscope via a serial port, which allows the

program to capture the output wave. This wave

is then Fourier transformed, producing an

amplitude versus frequency plot. The maximum

amplitude occurs at the current frequency of

the signal generator, with the other smaller

amplitudes attributed to background noise. The

maximum amplitude is determined for varying

frequencies to produce a gain plot for each

preamp, as shown in Figure 5. There is a fairly

constant output amplitude of roughly 80 mV up

Figure 6:

Output signal amplitude vs. frequency for Preamp 7

Cross talk for Preamp 7

5

until roughly 140 MHz, after which the

amplitudes drop off steeply, with small

undulations attributed to various resonances of

the preamp. At 100 MHz, where much of the

signal is expected for the experiment, the

amplitude is 95 mV, with a noise level of 0.6

RMS. The noise level was determined by finding

the RMS amplitude of the output wave when

the preamp was not connected to the signal

generator.

To measure the cross talk, a second

preamp was mounted on the mother board,

into channel 6. A signal was sent through this

new preamp, but the output wave was read off

of preamp 7. In a perfect world, no signal would

be seen in Preamp 7, but due to how close the

two preamps are mounted, some of Preamp 6’s

signal gets transferred over to Preamp 7. The

cross talk was measured just like the gain, at

varying frequencies, shown in Figure 6. The

cross talk amplitude is divided by the output

amplitude measured earlier in Preamp 7,

producing a plot of cross talk / amplitude versus

frequency. The maximum acceptable amount of

cross talk for the experiment is two percent,

and the setup was modified until the cross talk

was reduced to about that value. Modifications

mostly consisted of adding copper tape to the

backs of both preamps, as well as around the

signal cable on Preamp 6. The copper tape

acted like a Faraday cage, trapping field lines

and preventing cross talk. Unexpectedly, lower

cross talk was seen at higher frequencies, a

phenomenon not fully understood at this point.

However, after 60 MHz, the cross talk was well

below two percent of the signal, a promising

result.

 The gain and cross talk measurements

were repeated for Preamp 6. The noise level

was about the same, but the gain was about

half of Preamp 7’s, with about twice the cross

talk at a given frequency. Due to this

discrepancy, as well as the difficulty in obtaining

a low enough cross talk value, a new version of

the preamp was made.

New Preamps

 Figure 7:

There were various changes made to

the components on the preamp in this new

version. One of the most significant was the

addition of a “shaping capacitor,” which

increases the gain, boosting it most dramatically

in the 100 MHz range. Additionally, a new

socket and pin style connector (instead of

soldering the preamp directly to the

motherboard as before) was used to mount the

preamp to the motherboard, allowing it to be

easily removed. This easy removal allows

Top panel: output signal amplitude of 50 mV. Bottom

panel: output signal amplitude of 250 mV.

6

modification to be made to a single preamp,

and then for immediate testing and analysis of

these changes by remounting the preamp. This

revolutionized the testing methods contributing

to accelerated optimization of the preamp.

Since the gain was so much greater on

these new preamps, the input signal had to be

adjusted. The signal now consisted of a 50 mV

peak to peak sine wave from the generator,

attenuated by 38 dB, producing a 0.63 mV

signal on the scope.

 Shaping Capacitors

To shape the gain response of the

preamp, an RC circuit section was added to the

preamp, denoted by “3” on the schematic in

Appendix AI. At high frequencies, specifically

higher than ⁄ , the capacitor acts like a

short in the circuit. This very low impedance

allows for higher gain. In this case, a 100 pF

capacitor was used to boost the signal

everywhere, but most significantly at 100 MHz.

This change is seen in the top panel of Figure 7,

which shows the waveform of a new preamp

for an input signal of 100 MHz. The output

signal amplitude is greater by a factor of five,

and a clear peak was observed near 100 MHz, in

contrast with the bottom panel showing an old

preamp at 100 MHz. Unfortunately, the shaping

made the preamp very unstable, meaning it was

sensitive any touching or movement. Touching

the preamp with a finger or metallic tool adds

capacitance to that point in the circuit, which

can be the tipping point in an already unstable

circuit. Additionally, the boosting greatly

increased the cross talk.

Table 1:

The first solution, the simple solution,

was to remove the boosting capacitor. This

drastically reduced the gain, but this loss was

balanced by an increase in stability. For the final

experiment, where fifty thousand preamps will

be used, stability is key, perhaps even more so

than the gain.

Eight preamps were made with the

boosting capacitor removed, all of which were

individually tested for gain and noise levels

before being mounted together onto a

motherboard. The individual gain and noise

measurements were very consistent (Preamp 2

is a notable outlier), with a noise to signal ratio

of under five percent, summarized in Table 1.

Initially, the cross talk and noise values were

very high when all eight preamps were

mounted onto a single motherboard. This was

easily mediated by covering the back of the

preamp with a layer of insulating Kapton tape

and then a layer of grounded copper tape,

serving as a small Faraday cage. With these

tapes in place, the noise to signal ratio dropped

to eight percent. This is higher than the ratio for

individually mounted preamps, which is an

expected and unavoidable artifact of the close

mounting.

While the stability issue was overcome

by removing the boosting capacitor, this is not

exactly an acceptable solution. While the

preamps with no boosting were working with

low noise and high stability, the possibility of

achieving those same results with higher gain

justified further testing to search for a solution

that did not involve removal of the boosting

capacitor.

BFP520 versus BFP720 Transistors

There are five transistors on the preamp, three

of which are BFP520; these control the output

stage of the preamp. The two which are

originally BFP720 control the input stage. Both

the 520 and 720 are NPN polarity RF transistors,

Preamp # Balance # Voltage Drop Output Amplitude (mV) Noise RMS

0 22800 70 21 0.35

1 22600 74 23 0.38

2 22900 65 48 0.6

3 22400 74 21 0.34

4 22300 75 21 0.36

5 23100 70 24 0.36

6 21800 73 20 0.33

7 22300 71 22 0.35

7

but the newer 720, made of a silicon

germanium material, has a faster transition

frequency which allows for higher bandwidth.

Unfortunately, the 720 transistors on the

preamp added to the instability. By changing

them to 520 transistors, we achieved the same

gain, with significantly less noise and stability

issues.

Figure 8:

Some instability remained, even after

changing the transistors. The cause was tracked

to a small via in the center of the preamp,

shown in Figure 8. Touching this via with

tweezers or other small metal tool, in other

words adding capacitance, greatly reduced the

noise, and increased the gain by about ten

percent. Placing a small piece of copper tape

over just this via on the back achieved the same

results. This procedure was applied to three

preamps, with all 520 transistors and the

boosting capacitors. They all had consistent

output signal amplitude of over 300 mV, with

anoise amplitude of roughly 10 RMS. This is

summarized in Figure 9.

Grounding Improvements

The small via causing the instability in

the 520 preamps was originally designed to

provide grounding for a resistor and capacitor,

denoted R11 and C6. During testing, a better

ground source was found for them in the form

of a ground plane directly above them. When

the green mask on the board was scraped off, it

Figure 9:

was possible to solder the two components

from one of their designated pads onto the

exposed copper. By providing this better ground

source, the instability all but disappeared. For

something to be well-grounded, it needs to be

connected to a ground source directly, with as

little impedance as possible. Since thin wires or

traces and vias have small cross-sectional area,

they have high impedance. This can cause small

voltage variations in the supposedly constant

ground source. It is best to connect one side of

a component directly to ground or to use a thick

trace. In this instance, by connecting R11 and

C6 directly to ground instead of using a small via

provided more stability.

Figure 10 shows the gain for three

example preamps, with 520 transistors and the

flipped resistor and capacitor. There is very

good consistency across all the preamps, and a

clear peak at 100 MHz as expected. The noise to

signal ratio was also very low, with RMS noise

levels of less than 8 mV when the preamps

were mounted alone. Figure 10 also includes a

SPICE simulation of the circuit’s response, which

matches very nicely with the experimental data.

Back view of preamp: arrow denoted unstable via

Output signal amplitude versus frequency for three

preamps, with BFP520 transistors and a small piece of

copper tape over via.

8

Figure 10:

The cross talk for three preamps is

shown in Figure 11. While the three preamps

had a moderately similar response, the cross

talk to signal ratio was higher than the allowed

two percent. At time of writing no measures

had been taken to lower the cross talk.

Figure 11:

Conclusions

At the end of this study, the current best version of the preamp includes all 520 BFP transistors, a 100 pF

boosting capacitor, and flipped resistor and capacitor. The gain of the original preamp version was 32 dB

at its peak. This version had a peak gain of 52 dB, with a RMS noise level of 5 mV when mounted

individually; an improvement in gain by almost a factor of two. The cross talk remains an issue, and

future experimentation will have to be performed to determine a method of reducing the cross talk to

signal ratio to the requisite two percent. Additionally, the layout of the preamp must be changed, so

that the resistor and capacitor flipping is built in. While this is not yet the final version of the preamp

ready for the experiment, the preamp in its current state is suitable for use in testing other equipment.

References
1 DS2408: 1-Wire 8-Channel Addressable Switch

 http://www.maximintegrated.com/en/products/digital/memory-products/DS2408.html
2 Arduino Due Microcontroller

 http://arduino.cc/en/Main/ArduinoBoardDue

Acknowledgments

Several parties are deserving of recognition for the success of this project and summer

internship. I would first like to thank my supervisor, Dr. Vadim Rusu, for providing me with ample

guidance and support throughout my project, while also allowing me to learn from my own mistakes. I

would also like to thank my assistant supervisor, Dr. Aseet Mukherjee, and coworker Angela Yang for

always lending her third hand. Finally, I would like to recognize Elliot McCrory, Dianne Engram, Linda

Diepholz and the rest of the SIST Committee for selecting me to be a part of this program.

Gain in dB versus frequency for three preamps,

compared with simulated data (Blue)

Cross talk to signal ratio for three preamps with 520

transistors and flipped components.

9

Appendices

A1: Preamp Schematic

A2: Python Code

“balance_varies.py”
import serial
import time
import struct

def packIntegerAsULong(value):

"""Packs a python 4 byte unsigned integer to an arduino unsigned long"""
return struct.pack('I', value)

while 1:
opt = input("Enter 1 to initialize (999), 2 to program: ")
ser = serial.Serial(port="COM9",baudrate=115200, timeout = 2)
time.sleep(1)
a1 = []

if opt == 3:

#break out of loop
ser.close()
break

1 2

3

10

elif opt == 1:
#999 file
with open('999') as f:

for line in f:
data = line.split()
a1.append(int(data[0]))

num = a1[0] #number of preamps
elif opt == 2:

#upload file to arduino on COM9
with open('bal4') as f:

for line in f:
data = line.split()
a1.append(int(data[0]))
#print a1

num = a1[0] #number of preamps
num2 = packIntegerAsULong(num)
ser.write(num2)
#ser.write each line in file
for i in a1[3:]:

#print i
val = packIntegerAsULong(i)
#print binascii.hexlify(val)
ser.write(val)

time.sleep(.5)
for i in a1[3:]:

print i
line = ser.readline()
print line

#read each preamp
if a1[3] != 999:

for n in range(int(num)):
#time.sleep(5)
print ser.readline() #0 or 1 for talking to channel
print ser.readline()
print ser.readline() #DACA reading
print ser.readline() #DACB reading

elif a1[3] == 999:
print ser.readline() #reading DACA
print ser.readline() #DACA Data
print ser.readline() #reading DACB
print ser.readline() #DACB Data
print ser.readline() #no more addresses

ser.close()
f.close()

“read.py”
import numpy as np
import matplotlib.pyplot as plt

11

import serial
import time

scope=1

ADCLSB = 100*0.0390625 #(10 mV)
N=5000
nplot=5000
frate=5000

if scope:

ser = serial.Serial(port="COM5",baudrate=38400)
ser.write("HEAD OFF\r\n".encode())
ser.write("DAT:WID 1\r\n".encode())
ser.write("DAT:ENC RPB\r\n".encode())
ser.write("DAT:STAR 1\r\n".encode())
ser.write("DAT:STOP 10000\r\n".encode())
ser.write("ACQ:STOPA SEQ\r\n".encode())
ser.write("DESE 1\r\n".encode())
ser.write("*ESE 1\r\n".encode())
ser.write("*SRE 32\r\n".encode())
ser.write("*WAI\r\n".encode());
ser.write("ACQ:STATE RUN\r\n".encode())
ser.write("*OPC?\r\n".encode())
ser.readline()
ser.write("DAT:SOU CH4\r\n".encode())
ser.write("CURV?\r\n".encode())
seq1=[]

for i in range (1,10009):

c=ser.read()
if i > 9 and i<10009 :

seq1.append(128-ord(c))
time.sleep(1)

else:
seq1=[]
with open("520_st1_100") as f:

for line in f:
numbers_float = map(float, line.split())
seq1.append(numbers_float[0])

f.close()

diff = [ADCLSB*float(m) for m in seq1]
diff=diff-np.mean(diff)
seq11 = [ADCLSB*float(i) for i in seq1]
print len(seq1)
print "RMS=",np.std(diff)
x=[0.2*float(i) for i in range(0,len(seq1))]

12

#PLOTTING
#wave plot
fig = plt.figure(0)
ax2 = fig.add_subplot(111)
ax2.plot(x[:N],diff[:N])
plt.title("New Preamp Waveform")
plt.ylabel("Amplitude (mV)")

#fourier plot
fig1 = plt.figure(1)
ax3=fig1.add_subplot(111)
ft0 = np.fft.fft(diff*np.hanning(len(diff))) / (len(diff)/4)
freqs = np.fft.fftfreq(len(ft0),1./float(frate))
logft0 = 2 * abs(ft0)
xft0=[i for i in freqs]
ax3.plot(xft0[5:nplot],logft0[5:nplot], label='')
ax3.get_yaxis().get_major_formatter().set_useOffset(False)
ax3.set_xscale('log')
plt.xlabel("Frequency (MHz)")
plt.ylabel("Fourier Amplitude")
plt.title("Cross Talk")
plt.title("Fourier Plot")
plt.show()

if scope:

ser.close()
f=open('outtest','w')
for i in range(0,len(seq1)):

buf = "%7.4f\n" % (seq1[i])
f.write(buf)

f.close()

